SIDIS and Jets at a 2nd IR

Anselm Vossen and Zhongbo Kang

TMD PDFs from SIDIS

 $d^6\sigma = \frac{4\pi\alpha^2 sx}{O^4} \times$

N	U	L	Т
U	f ₁		h ₁
L		91	h _{1L}
Т	f _{1T}	917	h ₁ h _{1T}

Unpolarized

Polarized

target

Polarzied beam and

target

Boer-Mulders $\mathbf{h}_{1}^{\perp} = \mathbf{p} - \mathbf{b}$
Worm Gear $h_{IL}^{\perp} = \bigcirc \longrightarrow - \bigcirc \longrightarrow$
Transversity h _{1T} = -
Sivers $f_{1T}^{\perp} = \begin{array}{c} & & \\ & & \end{array}$
Pretzelosity $h_{1T}^{\perp} = 2$ –
g _{1L} =
Worm Gear g _{IT} = -

$$\begin{split} &\{[1+(1-y)^2]\sum_{q,\overline{q}}e_q^2f_1^q(x)D_1^q(z,P_{h\perp}^2)\\ &+(1-y)\frac{P_{h\perp}^2}{4z^2M_NM_h}\frac{\cos(2\phi_h^l)}{\log^2 q}\sum_{q,\overline{q}}e_q^2h_1^{\perp(1)q}(x)H_1^{\perp q}(z,P_{h\perp}^2)\\ &-|S_L|(1-y)\frac{P_{h\perp}^2}{4z^2M_NM_h}\frac{\sin(2\phi_h^l)}{\log^2 q}\sum_{q,\overline{q}}e_q^2h_{1L}^{\perp(1)q}(x)H_1^{\perp q}(z,P_{h\perp}^2)\\ &+|S_T|(1-y)\frac{P_{h\perp}}{zM_h}\frac{\sin(\phi_h^l+\phi_s^l)}{\sum_{q,\overline{q}}e_q^2h_1^q(x)H_1^{\perp q}(z,P_{h\perp}^2)}\\ &+|S_T|(1-y+\frac{1}{2}y^2)\frac{P_{h\perp}}{zM_N}\frac{\sin(\phi_h^l-\phi_s^l)}{\sum_{q,\overline{q}}e_q^2f_{1T}^{\perp(1)q}(x)D_1^q(z,P_{h\perp}^2)}\\ &+|S_T|(1-y)\frac{P_{h\perp}^3}{6z^3M_N^2M_h}\frac{\sin(3\phi_h^l-\phi_s^l)}{\sum_{q,\overline{q}}e_q^2h_{1T}^{\perp(2)q}(x)H_1^{\perp q}(z,P_{h\perp}^2)}\\ &+\lambda_e\,|S_L|y(1-\frac{1}{2}y)\sum_{q,\overline{q}}e_q^2g_1^q(x)D_1^q(z,P_{h\perp}^2)}\\ &+\lambda_e\,|S_T|y(1-\frac{1}{2}y)\frac{P_{h\perp}}{zM_N}\frac{\cos(\phi_h^l-\phi_s^l)}{zM_N}\sum_{q}e_q^2g_{1T}^{(1)q}(x)D_1^q(z,P_{h\perp}^2)}\} \end{split}$$

 S_L and S_T : Target Polarizations; λ e: Beam Polarization x: momentum fraction carried by struck quark, z: fractional energy of hadron

Accessing TMD PDFs and FFs with Jets

- Jets can be used as proxy for outgoing parton
 - → Decouple PDF and Fragmentation function (FF)
 - →breaks convolution of transverse momenta
- Enables to
 - measure TMD w/o FF contribution
 - -FF w/o TMD contribution
- Additional dependency on q_T

Phys.Rev.D 102 (2020) 7, 074015

Evolution of TMDs

- Need larger lever arm in Q^2 , x, k_T to determine evolution kernel, TMDs
- Large p_T coverage → larger b coverage, where TMDs are unconstrained

SIDIS physics at an EIC: Coverage summary talk

- Common theme on EIC impact
 - —Extended kinematic coverage and precision, along with polarization and possible beam charge degrees of freedom allow multi-pronged approach →needed to extract multidimensional objects
 - -TMD factorization is valid

Large Q^2 lever arm: probe evolution, disentangle contributions to σ

Coverage to low x: access sea and gluon distributions

Need 2nd IR to cover full phase space and maximize physics impact!

Big picture: Kinematics low/high

6

From H. Avakian

A 2^{nd} IR with high luminosity at moderate Q^2 would...

- Provide precision measurements where TMD effects are expected to be large
- Provide continuity between Jlab12 and EIC program→transition region between current/target collinear/TMD regions
- Map out complete Q² range at high x
 - Important
 - for TMD evolution
 - For Jets to understand evolution of hadronization corrections
- Be more sensitive to higher twist and in-medium effects
- TMD and jet measurements are multi-differential → statistics hungry!
- Will have acceptance and PID at high x/high z
- Might have beneficial acceptance for heavy flavor and di-jet/di-hadron Sivers

- Would be a natural candidate to use existing magnet < 3T
 - → Increase acceptance for low momentum particles

Example Expected TMD signal

Sivers Effect vs Q² (Pavia)

Measuring Sivers evolution may need large x, low y and large statistics in a wide range Q²

Evolution doesn't quite cancel.

From A Signori by way of Harut

STAR W results should shed more light

Also shown in Λ^{\uparrow} projections

Sensitivity coefficients for PV17

x bins

Sensitivity coefficients for TMD PDF width (N₁ parameter of PV17)

5x41 beam configuration

Sensitivity coefficients for TMD FF width (N₃ parameter of PV17)

10

From Alexey Vladimirov

See parallel session

Sensitivity of transversity extraction via di-hadrons

From Marco Radici

• 2nd IR data will be in transition region collinear/TMD, target/current

A. Prokudin et al. (YR SIDIS meeting)
See also JHEP 10 (2019) 122, JHEP10(2019)122

Acceptance I (y > 0.01)

• At full energy Acceptance at high x, Q^2 might also be impacted by PID capabilities

Jets

- TMD through jets
 - \rightarrow similar motivation as single/dihadron SIDIS: TMD effects largest at high x, explore full phase space
 - → Statistics Hungry:
 - higher W
 - More differential observables
 - e.g. $x, Q^2, j_T, q_T, \phi_h, \phi_S$
 - → Statistics famished channels
 - Exclusive di-jets to access GTMDs
 - ...
- Exploring transition region for jets
 - Study role of hadronization corrections

Summary and Conclusion

- Physics motivation for a 2nd IR optimized for a lower \sqrt{s} very strong
- Map out Q^2 at high x
- Moderate Q^2 means less smearing by hard QCD radiation:
 - Enhanced TMD effects
 - Higher sensitivity to twist3 effects
 - Enhanced in-medium effects
- Acceptance might be complimentary to 1st IR for high x, high z where TMD effects are large
- Lower $minp_T$ advantageous for
 - $-\Lambda$ program
 - -IFF
 - Heavy flavor
- Meson form factors...

Backup

Results with EIC smear (100k

Fraction of events staying in bin (10x100)

Fraction of events staying in bin (10x100)

PV17 reweighing: Impact on TMDs

5x100 configuration (0.15 < z < 0.7)

PV17 reweighing: Impact on TMDs

10x100 configuration (0.15 < z < 0.7)

 Less boost (might be in For some channels, sin Spectroscopy program) 300

PID might be better at h

8.3. JETS AND HEAV

Figure 8.42: Momentum vs pseudorapidity for the decay products of D^0 mesons energies of 10x100 GeV (top row), 18x100 GeV (middle row), and 18x275 GeV row). Charged pions are in the left column, charged kaons in the middle column trons/positrons in the right column. Counts have been scaled to correspond to an luminosity of 10 fb^{-1} .

Meson Form Factors

- Interplay between emergent hadronic mass and Higgs-mass mechanism $\rightarrow \pi$ determined due to QCD, $K\frac{1}{3}$ from Higgs
- From factors $e+p\to e'+n+\pi$, at low -t scattering off pion cloud (also can get $\frac{\sigma_L}{\sigma_T}$ from π^-/π^+ ratios)
- K form factor from $e + p \rightarrow e' + \Sigma^0/\Lambda + K^+$
 - -Still under investigation if scattering from K cloud dominates at same kinematics a and how σ_L/σ_T can be verified (probably from Σ^0/Λ)
 - -Possibility for first quality F_K measurement at $Q^2 > 0.2$

Access to Gluon TMDs with dijets

- Gluon TMDs structure more involved than quark sector
 - –8 TMDs, two types: Weizsacker-Williams (WW) and dipole
 - -SIDIS unique for WW type
 - Very little known about unpolarized and polarized gluon TMDs
 - Heavy quarkonium ideal channel, but relation of asymmetries to gluon TMDs model dependent
 - Open heavy quark (e.g. D meson pairs)
 also good, but large uncertainties
 →dijet/dihedron most promising
- Example: Gluon Sivers via dijet asymmetries

Kinematic map for dihadron measurements on gluon saturation _{pτ} vs Δφ for associate hadron

relative to leading hadron

Leading hadron

 10^{2}

ep/Au 5x41 GeV

0.6<y<0.8, I<Q²<2 GeV² charged hadron, $|\eta|$ <4.5, $p_{T trig}$ *>2 GeV, $p_{T assc}$ *>I GeV, 0.2< z_h <0.4, * indicates γ *p c.m.s frame

- Scattered e^- p range: $I \sim 2$ GeV, η range: $-2 \sim -1$ (tight Q^2 , y cuts)
- Hadron p range: 3~6 GeV, η range: forward rapidity

p vs η for scattered electron and charged hadron pairs (blue for e-, red for hadron)

Kinematic map for dihadron measurements on gluon saturation

ep/Au I8x I I0 GeV 0.6<y<0.8, I < Q²<2 GeV² charged hadron, $|\eta|$ <4.5, $p_{T lab}$ >0.25 GeV, $p_{T trig}$ *>2 GeV, $p_{T assc}$ *>I GeV, * indicates γ **p c.m.s frame

- Scattered e^- p range: 4~7 GeV, η range: -3~-2 (tight Q^2 , y cuts)
- Hadron p range: 3~8 GeV, η range: backward rapidity

p vs η for scattered electron and charged hadron pairs (blue for e-, red for hadron)

 p_T vs $\Delta \phi$ for associate hadron relative to leading hadron

Medium Modification of Azimuthal Asymmetries

In gaussian approximation

$$f_1^A(x, k_\perp) \approx \frac{A}{\pi \alpha} f_1^N(x) e^{\frac{-\vec{k}_\perp^2}{\alpha}}$$
, with $\alpha = \langle k_\perp^2 \rangle + \Delta_{2F}$
Quark transport parameter Δ_{2F} related to gluon density (due to interaction with gluons)

• Jets are sensitive to TMD PDF k_T only

$$\frac{\langle \sin \phi \rangle_{LU}^{eA}}{\langle \sin \phi \rangle_{LU}^{eN}} \approx \frac{\langle k_{\perp}^2 \rangle_A}{\langle k_{\perp}^2 \rangle} \left(\frac{\langle k_{\perp}^2 \rangle_{g^{\perp}}}{\langle k_{\perp}^2 \rangle_A^{g^{\perp}}} \right)^2 \exp \left[\left(\frac{1}{\langle k_{\perp}^2 \rangle_A} - \frac{1}{\langle k_{\perp}^2 \rangle} - \frac{1}{\langle k_{\perp}^2 \rangle_A^{g^{\perp}}} + \frac{1}{\langle k_{\perp}^2 \rangle_{g^{\perp}}} \right) \vec{k}_{\perp}^2 \right].$$

Functional form of PV17

arXiv:2007.08300

$$\begin{split} f_{1\text{NP}}^{a}(x, \boldsymbol{k}_{\perp}^{2}) &= \frac{1}{\pi} \; \frac{\left(1 + \lambda \boldsymbol{k}_{\perp}^{2}\right)}{g_{1a} + \lambda \; g_{1a}^{2}} \; e^{-\frac{\boldsymbol{k}_{\perp}^{2}}{g_{1a}}} \,, \\ D_{1\text{NP}}^{a \to h}(z, \boldsymbol{P}_{\perp}^{2}) &= \frac{1}{\pi} \; \frac{1}{g_{3a \to h} + \left(\lambda_{F}/z^{2}\right) g_{4a \to h}^{2}} \left(e^{-\frac{\boldsymbol{P}_{\perp}^{2}}{g_{3a \to h}}} + \lambda_{F} \frac{\boldsymbol{P}_{\perp}^{2}}{z^{2}} \; e^{-\frac{\boldsymbol{P}_{\perp}^{2}}{g_{4a \to h}}}\right) \end{split}$$

$$g_{3,4}(z) = N_{3,4} \; rac{(z^eta + \delta) \; (1-z)^\gamma}{(\hat{z}^eta + \delta) \; (1-\hat{z})^\gamma}$$

Meson form factors

- Elucidating in vis a vis mass generation (see also discussion about mass generation in 7.1) (kaon 1/3 higgs, pion almost 100% QCD)
- (how is F extracted again?)
- Kaon cloud unclear, to be verified by Jlab
 - →sigma0/lambda ratio to ge \sigma_L/sigma_T

TMD

$$F_{UT}^{\sin(\phi-\phi_s)} = \sum_{q} e_q^2 |C_V(Q)|^2 \int \frac{d^2b}{(2\pi)^2} e^{i(bp_T)/z} R(Q,b,\mu_0) f_{1T,q}^{\perp}(x,b;\mu_0) D_{1,q}(z,b;\mu_0) dz$$